Android Tablet-Computer im Pilottest mit Senioren

[toc]

Mit dem elderly interaction & service assitent (elisa) entsteht im EU-Forschungsprojekt SI-Screen ein Tablet-Computer, der für die individuellen Bedürfnisse von älteren Menschen zugeschnitten ist. Um die Touch-Genauigkeit der älteren Generation auf Tablets zu messen, wurde eine Testapplikation für einen Multi-Directional Tapping Task nach ISO 9241-9 Standard angefertigt und in einem Pilottest mit vier Senioren evaluiert. In diesem Beitrag stellen wir die Testapplikation und erste Ergebnisse aus dem Pilottest mit vier verschiedenen Android Tablet-Computern vor. Über begleitende Interviews wurden die technische Vorkenntnisse der Teilnehmer und der Anspruch an Displaygröße, Formgebung und Material-Eigenschaften in Fragebögen festgehalten.

Motivation

Im Projekt SI-Screen besteht eine Herausforderung in der Wahl der optimalen Displaygröße, Gewicht, Form, Materialen und technischen Merkmale von Tablet-Computer für ältere Menschen. Darüber hinaus muss die Mindestgröße von berührbaren grafischen Elementen auf dem Multi-Touch-Display bestimmt werden, bei denen ältere Nutzer eine hohe Erkennungsrate (über 70 Prozent) erzielen. Um neben den subjektiven Eindrücken der Probanden die Genauigkeit der Touch-Bedienung zu messen und die Mindestgröße der Element auf Tablets mit unterschiedlicher Displaygröße zu bestimmen, wurde eine eigene Android Test-Applikation entwickelt. In den nachfolgenden Abschnitten wird der implementierte Multi-Directional Tapping Task (MDTT) nach ISO 9241-9 Standard vorgestellt und die Ergebnisse aus dem Pilottest präsentiert.

Evaluationsdurchführung

Ziel des Pilottests war die Test-Anwendung und den zugehörigen Fragebogen auf deren Korrektheit und Vollständigkeit zu prüfen. Infolgedessen beschränkte sich der Test auf vier Probanden. In den folgenden Abschnitten stellen wir die Teilnehmer, die Wahl der Tablet-Computer und den MDDT-Ergnomie-Test nach ISO 9241 Standard Teil 9 vor.

Teilnehmer des Pilottests

Am Pilottest nahmen insgesamt zwei ältere Damen und zwei ältere Herren aus Deutschland teil. Das durchschnittliche Alter der vier Teilnehmer Betrug 63,5 Jahre. Nach Überarbeitung der Test-Software und der Fragen wird der Tablet-Test im Rahmen des SI-Screen-Projektes mit 15 älteren Menschen in Deutschland, sowie 15 älteren Probanden in Spanien wiederholt und die Ergebnisse gegenübergestellt.

[singlepic id=1325 w=290 float=left]

[singlepic id=1326 w=290 float=left]

Tablet-Computer im Pilottest

Bei der Vorauswahl der Tablet-Computer für den Pilottest wurde darauf geachtet, Endgeräte mit möglichst großen Unterschieden im Hinblick auf ihre physikalischen Merkmale zu wählen. Dabei kamen ausschließlich Android Tablets zum Einsatz, da der spätere Prototyp des elisa Tablets ebenfalls aus Tablet-Komponenten auf Android-Basis (Android Tablet Kits) gefertigt wird. Der Vorteil gegenüber einer Software-Lösung ist, dass die Anforderungen älterer Menschen auch gegenüber der Hardware-Benutzerschnittstelle berücksichtigen werden können.

[nggtags Gallery=Testgerät]

Nach eingehender Analyse der auf dem Markt verfügbaren Tablet-Computer (Stand 08.12.2011) fiel die Wahl auf das Motorola Xoom, Sony Tablet S, Sony Tablet P und das HTC Flyer. Diese unterscheiden sich in ihrer physischen Gesamtgröße, Displaygröße, Gewicht, Verarbeitung und Formgebung. Weiterführende Informationen zur Analyse der Tablet-Devices sind im Artikel Moderne Android Tablet-Devices im Vergleich einsehbar.

ISO 9241-9: Multi-Directional Tapping Task

Um die Ergebnisse der Touch-Eingabe auf unterschiedlichen Tablet-Computern testen zu können wurde der MDTT-Test herangezogen, der als Ergonomie-Test im „ISO 9241 Standard Teil 9: Anforderungen an Eingabegeräte – außer Tastaturen“ beschrieben ist. Eine detaillierte Übersicht zur Evaluation nach ISO 9241-9 bietet der Artikel Evaluation von Zeigegeräten nach ISO 9241-9.

[singlepic id=1307 w=618 float=left]

Wie die Abbildung zeigt, mussten die Probanden im MDTT-Test mehrere auf einem Kreis angeordnete Elemente in einer vorbestimmten Reihenfolge anwählen. Wurde ein Element erfolgreich angewählt, ist anschließend das gegenüberliegende Element anzuwählen. Während des Tests wurde die Genauigkeit bei der Berührung der Elemente sowie die Zeit für das Zurücklegen der Wegstrecke zwischen zwei Elementen gemessen. Die Größe der Elemente (W) wird durch den Schwierigkeitsindex (ID) und den Durchmesser des äußeren Kreises (D) nach Fitt’s law berechnet:

ID = \log_2 \left(\frac{D}{W}+1\right).

Nachdem für das Android-Betriebssystem bislang keine Software verfügbar ist, die den MDTT durchführen kann, wurde eine eigene Test-Anwendung für Android Tablet-Computer angefertigt. Die Test-Applikation bestimmt den Durchmesser des äußeren Kreises (D) über die kürzere Seite des jeweiligen Tablet-Displays mit Abstand zum Display-Rand.

Für jedes Tablet wurden insgesamt 12 MDTT-Tests aus einer Kombination von 4 Schwierigkeitsindizes (2.5 = sehr leicht, 3.0 = leicht, 3.5 = schwer,  4.0 = sehr schwer) und drei Wiederholungen nach Zufallsprinzip ausgewählt. In jedem Test wurden 11 Kreis-Elemente dargestellt, deren Größe (W) nach Fitts‘ law über den Durchmesser (D) und dem zufällig gewählten Schwierigkeitsindex (ID) berechnet wurden. Die Tests waren zufällig verteilt, um einen Lerneffekt bei den Probanden zu vermeiden. Der Test begann stets an einer festen Position und endet nach 11 Zügen mit dem letzten Kreis-Element.

Die Schwierigkeitsindex in den vier Schwierigkeitsstufen von 2.5 bis 4.0 entspricht auf einem 7″-Touchscreen einer Element-Größe von ~13,6 mm (ID=2.5) bis ~4,2 mm (ID=4.0). Auf einem Tablet von 10,1″ beträgt die Element-Größe jeweils ~21,7 mm (ID=2.5) bis ~6,6 mm (ID=4.0). Mit dem Grenzwerttest der Schwierigkeitsstufe 4.o konnte festgestellt werden, ob ältere Teilnehmer in der Lage sind, sehr kleine Größen anzuwählen und welche Genauigkeit dabei erzielt wird. Die Liste aller Element-Größen sind der nachfolgenden Tabelle zu entnehmen.

Tablet Computer Bildschirmdiagonale (in Zoll) Schwierigkeitsindex
ISO ID
Elementbreite
ISO W
(in mm)
Durchmesser
Aussenkreis
ISO D
(in mm)
Motorola Xoom 10.1 2.5 ~21,7 ~101,4
3.0 ~14,4
3.5 ~9,8
4.0 ~6,6
Sony Tablet P 2 x 5.5 2.5 ~18,6 ~86,6
3.0 ~12,3
3.5 ~8,4
4.0 ~5,7
HTC Flyer 7 2.5 ~13,6 ~63,6
3.0 ~9,1
3.5 ~6,1
4.0 ~4,2
Sony Tablet S 9.4 2.5 ~19,8 ~92,3
3.0 ~13,1
3.5 ~8,8
4.0 ~6,1

Ermittlung der Fehlerrate

Jede Berührung des Display durch den Probanden wurde von der MDTT-Test-Anwendung aufgezeichnet. Neben der Position auf dem Bildschirm wurde insbesondere der Zeitpunkt der Berührung, die Abweichung vom Mittelpunkt des anzuwählenden Kreis-Elements und der Schwierigkeitsindex festgehalten. Eine Berührung außerhalb des anzuwählenden Elements führte zu einer Wiederholung an der selben Position.

Die Fehlerrate (Error Rate, ER) wurde anschließend aus der Anzahl der Berührungen pro Test (N) und der Anzahl der anzuwählenden Kreis-Elemente geteilt durch die Anzahl der Kreise-Elemente ermittelt.

Fragebogen

Zu Beginn des Pilottests wurde mit Hilfe von sechs Fragen die Technikaffinität der Probanden festgestellt, um später die Interview- und Messergebnisse von Personen mit unterschiedlichem Erfahrungsgrad vergleichen zu können. Hierzu kamen Fragen zur Erfahrungen mit Touchscreen-Geräten, wie zum Beispiel Navigationsgeräte in Autos, Fahrkartenautomaten, oder auch Tablet-Computer zum Einsatz.

Anschließend wurden die Teilnehmer gebeten, die Tests auf einem der vier verschiedenen Android-Tablets durchzuführen und direkt im Anschluss die subjektiven Eindrücke vom jeweiligen Gerät nach den Tests im Fragebogen festzuhalten. Zu jedem Gerät waren die nachfolgenden neun Aussagen auf einer 5er-Likert-Skala zu bewerten:

  1. Die Bedienung macht Spaß.
  2. Die Bedienung ist sehr genau.
  3. Die Bedienung hat mich körperlich ermüdet.
  4. Die Bildschirmgröße ist zu klein.
  5. Das Gehäuse hat eine sehr hohe Qualität.
  6. Das Bedienen mit dem Finger war sehr angenehm.
  7. Ich musste mich beim Bedienen sehr konzentrieren.
  8. Das Gewicht des Tablets ist zu schwer.
  9. Das Tablet war insgesamt sehr leicht zu bedienen.

Nach Durchführung der Tests auf allen vier Geräten bildeten die Teilnehmer zusätzlich eine Rangreihe der bevorzugten drei Geräte entsprechend ihres Gesamteindrucks bei der Bedienung. Abschließend durfte jeder Proband ergänzende Kommentare im Fragebogen abgeben.

Diskussion der Ergebnisse

In der Evaluation der Testergebnisse wurden die aufgezeichneten Daten der Test-Applikation, die zugehörigen Fragebögen der Probanden sowie eigene Beobachtungsnotizen und Videoaufzeichnungen herangezogen. Die Ergebnisse der Tests können den nachfolgenden Abschnitten entnommen werden.

Messungen zur Touch-Genauigkeit

Die nachfolgende Tabelle zeigt für den jeweiligen Schwierigkeitsindex die durchschnittliche Trefferquote aller vier Tablet-Computer, welche durch die vier Probanden in jeweils 48 Tests mit drei Wiederholungen ermittelt wurden. Die Ergebnisse zeigen, dass mit der logarithmisch ermittelten Element-Größe die Fehlerquote mit steigendem Schwierigkeitsgrad exponentiell abnimmt. Weiterer Einflussfaktor ist die Berührungsempfindlichkeit der kapazitiven oder resistiven Touchscreens, insbesondere bei sehr kleinen Elementen.

Schwierigkeitsindex (ID) Fehlerquote
2.5 1,68 %
3.0 6,71 %
3.5 45,68 %
4.0 66,15 %

Wie die zweite Tabelle zeigt, muss bei der Trefferquote pro Schwierigkeitsindex berücksichtigt werden, dass die älteren Teilnehmer auf dem HTC Flyer eine signifikant hohe Fehlerquote erzielt haben, was den Gesamtwert zusätzlich beeinflusst. Dem gegenüber haben die anderen Tablet-Geräte eine durchschnittliche Fehlerquote von ca. 24 %.

Tablet-Computer Fehlerquote
Motorola Xoom 18,52 %
Sony Tablet P 29,41 %
HTC Flyer 65,51 %
Sony Tablet S 25,42 %
Durchschnitt 46,29 %

Weibliche Probanden hatten mit durchschnittlich ca. 15 % eine niedrigere Fehlerquote als männliche Probanden mit ca. 41 %. Die Abweichung von ca. 25 % ist vermutlich auf die unterschiedlichen Fingerlängen-Verhältnisse, Trockenheit und faltige Fingerkuppen zurückzuführen.

Erkenntnisse aus den Fragebögen

Die folgenden Abschnitte fassen die Erkennisse zusammen, die auf Basis der subjektiven Meinungen der älteren Teilnehmer nach den Tests abgeleitet werden konnten. Über Netzdiagramme werden ausgewählte Antworten zu den jeweiligen Tablet-Computer im Test gegenübergestellt. Die Antworten sind im Uhrzeigersinn nach Displaygröße angeordnet. Aus Vergleichbarkeitsgründen wurden die bereits oben vorgestellten Statements dabei so umcodiert, dass ein höherer Skalenwert einer besseren Eigenschaft entspricht.

Technikaffinität

Während eine Dame und ein Herr fast keine Erfahrung im Umgang mit Computern oder Geräten mit Touch-Oberfläche angaben, erwies sich eine Dame fortgeschrittene Computer-Nutzerin und ein Herr berichtete von Erfahrung mit verschiedenen Tablet-Computern.

Spaß bei der Bedienung

[singlepic id=1469 w=618 float=center]

Das Diagramm zeigt, dass für die vier Testteilnehmer bei zunehmender Bildschirmgröße, der Spaß bei der Bedienung ansteigt. Dieses Ergebnis scheint nachvollziehbar, da  bei kleinen Display-Größen eine hohe Fehlerquote aufgezeichnet wurde, die bei zunehmender Display-Größe exponentiell gesunken ist. Eine bereits angedeutete Ursache dürfte die Berührungsempfindlichkeit und Technologie der Touchscreens sein. Je kleiner der Bildschirm ist, desto weniger genau kann die exakte Position der Berührung erkannt werden. Infolgedessen sinkt der Spaß bei der Bedienung des Gerätes, wenn die Eingabe mehrmals wiederholt werden muss.

Genauigkeit der Berührungserkennung

[singlepic id=1465 w=618 float=center]

Die Genauigkeit der Erkennung durch den Touchscreen der Tablet-Geräte wurde von den älteren Teilnehmern als durchschnittlich gut eingeschätzt. In der Auswertung erhält das HTC Flyer allerdings die niedrigste Wertung. Auch für das Sony Tablet P vergeben die Probanden eine negative Einstufung der Erkennungsgenauigkeit, obwohl die Messergebnisse auf eine niedrigere Fehlerquote gegenüber dem HTC Flyer aufzeigen.

Ermüdungsfaktor

[singlepic id=1462 w=618 float=center]

Nach Aussage der Probanden sind nach  jedem Tablet-Test keine oder lediglich geringe körperlichen Ermüdungserscheinungen bei der Nutzung der Tablets aufgetreten, obwohl die älteren Teilnehmer die Geräte während der Tests durchgehend in der Hand halten mussten. Den Kommentaren der Teilnehmer zufolge wären sie bereit, auch zeitlich längere Tests durchzuführen.

Bildschirmgröße

[singlepic id=1461 w=618 float=center]

In der Abbildung  ist erkennbar, dass das Sony Tablet P mit seinen beiden 5,5-Zoll-Displays von allen Teilnehmern als zu klein eingestuft wurde, obwohl die physische Gesamtfläche des Sony Tablet P größer ist als die des HTC Flyer ist. Die Testteilnehmer deuteten an, dass sie die Trennung der Bildschirme in der Mitte als störend empfinden. Ein Teilnehmer bemerkte, dass die geteilten Display-Flächen für ihn einen Kontext-Wechsel verursachen und er nicht die Bildinhalte als Ganzes wahrnehmen würde.

Das Display des HTC Flyers wurde von der Mehrheit als eher zu klein eingestuft. Dem gegenüber wurden im Durchschnitt die Bildschirme des Motorola Xoom und des Sony Tablet S als gut bewertet. Einzelne Teilnehmer können sich für das elisa-Tablet auch noch größere Displays vorstellen.

Qualität der Tablet-Gehäuses

[singlepic id=1464 w=618 float=center]

Die Testpersonen vergaben für alle Geräte eine hohe, jedoch keine sehr hohe Wertung für die Qualität. Dieses Ergebnis sollte vor dem Hintergrund betrachtet werden, dass drei der vier Personen vor dem Pilottest noch keine Erfahrung mit Tablet-Geräten hatten. Infolgedessen erfüllen die Probanden nicht die Voraussetzungen einen objektiven Vergleich zu anderen verfügbaren Tablet-Computern herzustellen. Die Angaben beschränken sich folglich auf den relativen Vergleich zwischen den verwendeten vier Geräten im Test.

Komfort der Touchscreen-Bedienung

[singlepic id=1463 w=618 float=center]

Analog zum Spaß bei der Bedienung verhält sich die Frage, ob die Bedienung mit den Fingern angenehm war. Das Netzdiagramm ist weitestgehend identisch. Der Ausschlag fällt beim HTC Flyer etwas geringer und beim Motorola Xoom etwas größer aus. Infolgedessen wird das Xoom Tablet von den Teilnehmern als sehr angenehm in der Bedienung eingestuft.  Ein möglicher Einfluss auf diese Angabe dürfte die geringe Fehlerquote haben.

Konzentrationsfaktor

[singlepic id=1468 w=618 float=center]

Ähnlich verhält es sich mit den Angaben zur Konzentration bei den Tests. Insgesamt waren in den Fragebögen der Wert für die benötigte Konzentration bei den Tests durchgehend niedrig. Nur bei Tablet-Computern mit kleineren Displays, dem Sony Tablet P und dem HTC Flyer gaben die Probanden einen leicht höheren Konzentrationsbedarf an.

Tablet-Gewicht

[singlepic id=1467 w=618 float=center]

Das Diagramm verdeutlicht eine Abweichung zwischen dem tatsächlichen und empfundenen Gewicht der Tablet-Computer.  Die beiden Sony Tablets wurden weder als zu schwer noch als zu leicht bewertet und liegen gegenüber den anderen Tablets im Mittelfeld. Das Xoom Tablet wurde von allen älteren Teilnehmern als zu schwer eingestuft und knapp danach folgt bereits das über 300 Gramm leichtere HTC Flyer.

Möglichen Einfluss auf die Beurteilung des Gewichts könnte zum Einen die Gesamtgröße des Geräts zusammen mit dem Rahmen haben. Zum Anderen besteht der Rahmen des Xoom Tablets und des HTC Flyers überwiegend aus Metall. Dem gegenüber besteht das Gehäuse des Sony S und P aus Kunststoff.

Gesamteindruck

Auf Basis der durchgeführten Rangreihenbildung durch die Testteilnehmer belegen das Motorola Xoom den ersten, das Sony Tablet S den zweiten,  das HTC Flyer den dritten und das Sony Tablet P den vierten Platz.

Tablet-Computer Platz 1. Platz 2. Platz 3. Platz 4. Platz
Motorola Xoom 1 2 1 1 0
Sony Tablet S 2 2 1 0 1
HTC Flyer 3 0 1 2 1
Sony Tablet P 4 0 1 1 2

Den Probanden zufolge überzeugt das Motorola Xoom durch seine Bedienbarkeit, die Qualität, der Oberfläche und der Helligkeit. Dem Gegenüber wird das Sony Tablet S für seine Bedienbarkeit, das angeschnittene Gehäuse mit breitem Gehäuserand und dem relativ leichten Gewicht bei großer Display-Größe gelobt.

[singlepic id=1471 w=618 float=center]

Zusammenfassung und Ausblick

Aus den Ergebnissen der Pilottest konnten bereits sehr interessante Erkenntnisse gewonnen werden, die beim groß angelegten Test mit insgesamt 30 Probanden in Deutschland und Spanien verifiziert werden müssen. In erster Linie lassen die Ergebnisse aus den Messungen und Fragebögen eine klare Tendenz für Tablet-Computer mit großem Bildschirm erkennen. Dabei sollte allerdings berücksichtigt werden, dass trotz großem Display das Gewicht in einem annehmbaren Verhältnis zur Bildschirmgröße stehen sollte. Bei den vier getesteten Geräten bieten das Motorola Xoom und das Sony Tablet S den besten Kompromiss zwischen Größe und Gewicht. Darüber hinaus hatte das eingesetzte Material Einfluss auf das subjektive Empfinden bezüglich des Gewichts. Zwar wurde ein Tablet-Rahmen aus Metall als höherwertiger eingestuft, jedoch wurde das Gewicht von Plastik-Gehäusen als leichter empfunden.

Die Messungen der Fehlerquote der vier Tablets zeigt, dass für eine hohe Erkennung der Touch-Eingabe durch Senioren eine Mindestgröße von ca. 9-10 mm für die visuellen Interaktionselemente gewählt werden sollte. Andernfalls kann das einen negativen Einfluss auf den Spaß bei der Bedienung haben.

Nicht nur aus den aufgezeichneten Messwerten , sondern auch aus den Fragebögen der Probanden lässt sich das Motorola Xoom als Favorit herausstellen. Für das Tablet wurde mehrfach der erste Platz vergeben. Knapp danach folgt das Sony Tablet S auf dem zweiten Platz. Interessanterweise unterscheidet sich die Platzvergabe je nach Geschlecht. Während Männer eindeutig das Motorola Xoom bevorzugen, vergaben Frauen dem etwas kleineren und leichteren Sony Tablet S die Bestnoten.

Im Rahmen der Tests des SI-Screen Projekts in Spanien und Deutschland werden einige Messergebnisse und Beobachtungen näher beleuchtet werden; insbesondere, ob Frauen und Männer unterschiedliche Präferenzen und Anforderungen an Tablet Computer haben. Dabei wird nicht nur die subjektive Wahrnehmung der Probanden verglichen, sondern auch auf die geschlechtsspezifischen Unterschiede bei den Fingern geachtet.

Auffällig ist, dass die Finger älterer Herren eher breit und groß sind. Die Finger von älteren Damen sind dagegen eher schmal. Dieser Umstand kann Einfluss auf die Präzision der Bedienung haben.  Ein weiterer Einflussfaktor wäre auch die Veränderung der Struktur und Feuchtigkeitsaufnahme der Fingerkuppen  bei älteren Generationen[ref]Studie zu altersbedingten Veränderungen in der Struktur und der Präzision der Finger. Verfügbar unter: http://www.jneurosci.org/content/19/8/3238.full.pdf. (04.06.2012)[/ref].

Unabhängig davon planen wir, die Ergebnisse aus den Tests mit älteren Menschen denen von jüngeren Leuten gegenüber zu stellen. Ziel ist eine Analyse der altersbedingten Auswirkungen auf die Tests.

Danksagung

Wir bedanken uns herzlich bei den vier älteren Testkandidaten für das rege Interesse und die Teilnahme am Pilottest. Ein weiteres Dankeschön an Florian Ott, Benjamin Prost, Tobias Haugg und Britta Meyer für die Unterstützung bei der Vor- und Nachbereitung, sowie der Durchführung des Pilottests an der Universität der Bundeswehr München.

Dieser Beitrag steht im Zusammenhang mit dem Forschungsprojekt SI-Screen, das mit Mitteln des Bundesministeriums für Bildung, und Forschung (Förderkennzeichen 16SV3982), sowie durch das Europäische AAL Joint Programm (AAL-2009-2-088) gefördert wird. Das Vorhaben wird von der Innovationsmanufaktur GmbH (ehemals SportKreativWerkstatt GmbH) koordiniert und gemeinsam mit der Universität der Bundeswehr München realisiert. Weiterführende Informationen sind verfügbar unter http://www.si-screen.eu.

Moderne Android Tablet-Devices im Vergleich

[toc]

Tablets haben inzwischen Laptops als ubiquitäre Benutzerschnittstellen den Rang abgelaufen und werden zunehmend zum alltäglichen Begleiter. Vor diesem Hintergrund fasst der vorliegende Artikel aktuelle sowie in naher Zukunft auf dem Markt erhältliche Tablet-Produkte zusammen und vergleicht sie miteinander. Der Schwerpunkt des Vergleichs liegt in erster Linie auf Tablets mit dem Betriebssystem Android, wobei zwei Geräte mit anderen Betriebssystemen als Referenz dienen. Der Artikel ist im Kontext des Forschungsprojekts SI-Screen entstanden, das aktuell unter Beteiligung der Forschungsgruppe Kooperationssysteme zusammen mit anderen Firmen durchgeführt wird und versucht, älteren Menschen durch eine einfach zu bedienende Benutzerschnittstelle einen leichteren Zugang zum Social Web zu ermöglichen. In der Zusammenstellung werden deshalb auch wesentliche Anforderungen an die Geräte für die Nutzung durch Senioren berücksichtigt. Darüber hinaus werden im Hinblick auf die im Projektkontext betrachtete Nutzergruppe der „Best Ager“ nicht nur Tablets, die in naher Zukunft bereits erscheinen behandelt, sondern auch Industrial-Design-Konzepte, die ein Wegweiser dafür sein können, wie derartige Geräte in wenigen Jahren aussehen könnten.

Laut jüngsten Untersuchungen ist das Betriebssystem Android auf dem Vormarsch und hat im Smartphone-Bereich bereits einen Marktanteil von 50 Prozent erreicht.[ref]http://www.welt.de/print/welt_kompakt/webwelt/article13719379/Android-auf-dem-Vormarsch.html.[/ref] Auch im Tablet-Bereich wird Android immer mehr zum Apple-Konkurrenten. Apple iOS hat im 2. Quartal 2011 etwas über 30 Prozent Marktanteil im Vergleich zum Vorjahr verloren, wohingegen Android fast 30 Prozent hinzugewinnen konnte.[ref]http://www.androidmag.de/news/strategy-analytics-android-tablets-am-vormarsch/.[/ref]

[singlepic id=794 w=290 float=left] [singlepic id=795 w=290 float=left]

[singlepic id=796 w=618 float=]

Zukunftsvisionen

In diesem einführenden Abschnitt werden Konzepte von Tablet-Devices vorgestellt, die zum Teil nur als Grafik und Idee, aber auch bereits als Prototyp vorhanden sind. Im Vordergrund der Betrachtungen steht der potenzielle Mehrwert für ältere Menschen.[ref]Die vorgestellten Design-Studien und Prototypen basieren primär auf den Blogposts „The Future of Tablets – What your tablet will look like in 5 years“ und dem Engadget-Beitrag „Sharp bringt Tablet für Senioren„.[/ref]

Papier-Tablet

Eine mögliche Weiterentwicklungsrichtung für Tablet-Devices ist das Material. Diesbezüglich existieren Visionen, dass ein Tablet in Zukunft einem Stück Papier ähnlich wird, auf dem man beispielsweise seine Zeitung lesen kann. Die digitale Version ist dabei immer aktueller als gedruckte Zeitungen und gleichzeitig flexibler als bisherige Tablets, da sich dieses Device falten lässt und somit auch bequem in einer Jackentasche unterzubringen ist. Um die Vision zu verwirklichen, läuft aktuell an der Stanford Universität ein Projekt um biegsame Batterien aus Papier herzustellen[ref]http://news.stanford.edu/news/2009/december7/nanotubes-ink-paper-120709.html.[/ref]. Neben der grundlegend anderen Haptik liegt der Hauptvorteil des Konzepts darin, dass das leicht in jeder Jackentasche mitgenommen werden kann.

[singlepic id=626 w=618 float=center]

Smartphone-Tablet-Hybrid

Eine andere Designstudie beschäftigt sich mit der Lösung für das Problem, mit einem Tablet auch telefonieren zu können. Nutzer haben heute häufig nur eine SIM-Karte. Sofern diese für den mobilen Internetzugang in einem Tablet verwendet wird, ist die telefonische Erreichbarkeit eingeschränkt. Im Lösungsansatz von HTC deshalb verfügt das Tablet über einen Telefonhörer in stabform zum Telefonieren. Somit kann man sein Tablet auch als Telefon benutzen und hat trotzdem nur einen kleinen Hörer am Ohr. Zudem ist der ein Hörer am Ohr eine seit langem bekannte Art zu telefonieren und erfordert somit keine Verhaltensumstellung.

[singlepic id=620 w=618 float=center]

Senioren-Tablet

In Japan bringt Sharp ein Senioren-Tablet[ref]http://de.engadget.com/2011/02/18/japan-sharp-bringt-tablet-fur-senioren/.[/ref] auf den Markt, welches das Einkaufen erleichtern soll, indem die Benutzer durch ein virtuelles Einkaufszentrum geleitet werden. Das Gerät eignet sich vor allem für Personen, die aus gesundheitlichen Gründen nicht mehr ausreichend mobil sind, um die Einkäufe selbst im Supermarkt durchzuführen. Durch die Verwendung von großer Schrift und speziell angepassten Bedienelementen, richtet sich das Tablet nach den besondere Bedürfnissen der Zielgruppe „Best Ager“. Die im Comic-Design gehaltene Software verwendet eine eigene Währung und nutzt eine virtuelle Bezugsperson (Avatar) als zusätzliche personalisierte Hilfestellung für die Benutzer.

[singlepic id=665 w=618 float=center]

Tablet-Auswahl im Überblick

Dieser Abschnitt gibt einen Überblick über die innerhalb der Marktstudie verwendeten Geräte sowie die zugrundegelegten Bewertungskriterien, wie beispielsweise Gewicht, Auflösung, Displaygröße oder Abmessungen. Die Geräteauswahl basiert u.a. auf dem Heise Preisvergleich für Tablets. Eine besondere Herausforderung war dabei die Konsolidierung der z.T. fehlenden oder voneinander abweichenden Angaben zu Ausstattung und technischen Details.

[nggtags Gallery=Überblick]

Eingrenzung des Studienrahmens

Der Begriff „Tablet“ wurde in der Vergangenheit für sog. „Tablet-PCs“, eine primär von Microsoft geprägte Laptop-Spezialform aus den späten neunziger Jahren verwendet. Diese ursprüngliche Kategorie des Tablet-PCs, bei der es sich quasi um einen Laptop mit drehbarem Touchscreen handelt wird heute meist als Convertible bezeichnet. Kennzeichnend für die Geräte ist u.a. der häufig mitgelieferte Stift sowie eine typischerweise vorhandene Handschrifterkennung.

Spätestens seit der Einführung des Apple iPad wird der Begriff „Tablet“ inzwischen synonym für ultra-mobile Touchscreens verwendet, die meist gänzlich ohne Tastatur auskommen und deutlich größer sind als die von der grundsätzlichen Bedienung her sehr ähnlichen Smartphones.  Im Unterschied zu Convertibles, deren Software meist keinerlei Unterschiede zu einem klassischen Desktop-PC aufweisen, arbeiten Tablets fast ausschließlich mit speziell angepassten Betriebssystemen, die auf dem App-Konzept basieren. Hierdurch erlauben sie die modulare und sehr einfache Erweiterung um neue Funktionen bzw. Anwendungen.

Am Beispiel der verschiedenen Transformationsstufen vom Laptop zu einem multimedialem Notizblock des HP EliteBook 2760p zeigt die nachfolgende Galerie den Unterschied zwischen dem Convertible und einem Viewsonic Viewpad 7:

[nggtags Gallery=Abgrenzung]

Bewertungskriterien

Um die Funktionalitäten und Besonderheiten der Tablets ausführlich gegeneinander abgrenzen zu können, wurden unterschiedliche Bewertungskriterien gesammelt und im tabellarischen Überblick am Ende dieses Artikels zusammengestellt. Alle hier aufgeführten Tablets sind WLAN-fähig und unterstützen Multitouch-Gesten. Die Bewertungskriterien sind folgende:

  • Preisspanne: Spanne zwischen dem niedrigsten und höchsten Preis des Heise Preisvergleichs für Tablets.[ref]Bei Tablets mit mehreren Ausstattungsvarianten wurde jeweils die billigste Variante für die Untergrenze und die Top-Variante für die Obergrenze der Preispanne verwendet. Alle Preise basieren auf Angaben vom 28.11.2011.[/ref]
  • Displaygröße: Display-Diagonale in Zoll
  • Abmessungen: Breite und Höhe des Gerätes in Millimetern
  • Dicke: Dicke des Tablets in Millimetern
  • Gewicht: Gewicht des Tablets in Gramm
  • Gewicht/Größe: Verhältnis von Gewicht in Gramm zu Displaygröße in Zoll (je kleiner, desto besser)
  • Auflösung: Native Auflösung des Tablets
  • Prozessor: CPU des Tablets mit Rechengeschwindigkeit in GHz
  • Arbeitsspeicher: Arbeitsspeicher in GB
  • Massenspeicher: Interner Flash-Speicher des Tablets
  • Betriebssystem: Verwendetes Betriebssystem
  • 3G- / WWAN-Modul: Möglichkeit, mit dem Tablet auch unterwegs ohne WLAN im Internet zu surfen.
  • Speicherkarten: Welche und wie viele Speicherkartenslots sind vorhanden?
  • Kamera: Sind Kameras vorhanden und welche Auflösung haben sie?
  • haptische Tastatur: Wird eine haptische Tastatur speziell für das Gerät mitgeliefert, oder ist sie als Zubehör verfügbar?

Neben diesen quantitativen Bewertungskriterien wurden folgende subjektiven bzw. kontextspezifischen Vergleichskriterien für die Zusammenstellung herangezogen:

  • Verarbeitung/Qualität: Wirkt das Tablet hochwertig verarbeitet?
  • Haptik: Wie fühlt es sich an?
  • Besonderheiten: Beispielsweise Stylus, Tastatur, aufklappbar
  • Knöpfe: Hat das Tablet Knöpfe und wenn ja wie viele? Sind die Knöpfe sinnvoll belegt und gut zu erreichen?
  • Ergonomie: Liegt das Tablet gut in der Hand?
  • Mobilität: Kann man das Tablet auch bequem mit nur einer Hand halten?
  • Displayqualität: Spiegelt das Display?

Tablet-Devices im Detail

In diesem Abschnitt werden die im Überblick oben bereits aufgeführten Tablets jeweils kurz mit ihren Besonderheiten im Detail vorgestellt.

Sony Tablet S

[singlepic id=622 w=618 float=center]

Das Sony Tablet S hat eine Bildschirmdiagonale von 9,4 Zoll und im Gegensatz zu den meisten Tablets eine schräge Bauform. Dies ermöglicht eine ergonomische Körperhaltung, wenn das Gerät auf dem Tisch liegt, da man sich nicht nach vorne beugen muss um den Bildschirm ohne Spiegelungen zu erkennen. Die Top-Variante bietet  bis zu 32 GB Massenspeicher und 3G.

Das Tablet wird mit Android 3.1 ausgeliefert und kann auf Android 3.2 geupdatet werden. Der auf den ersten Blick gute technische Eindruck wird durch die Verwendung des etwas billig wirkenden Kunststoffs getrübt.

Sony Tablet P

[singlepic id=617 w=618 float=center]

Im Gegensatz zu seinem zuvor vorgestellten großen Bruder hat das Tablet P zwei 5,5 Zoll Bildschirme, die es ermöglichen das Gerät zuzuklappen, was wiederum einen enorm hohen Mobilitätsfaktor mit sich bringt. Die CPU ist ein Tegra 2 mit 1,0 GHz, der auch in vielen anderen Android-Tablets wie zum Beispiel dem Asus EeePad Transformer TF101 oder dem Sony Tablet S zu finden ist.

Im Vergleich zu anderen Tablets ist das Gerät mit einem Preis von rund 599 Euro relativ teuer und mit 14 Millimetern vergleichsweise dick. Ein Pluspunkt ist die Tatsache, dass es bereits mit Android 3.2 ausgeliefert wird, der momentan aktuellsten Honeycomb-Version.

Asus EeePad Transformer TF101

[singlepic id=621 w=618 float=center]

Das Asus EeePad Transformer hat eine Bildschirmdiagonale von 10,1 Zoll und wiegt nicht zu unterschätzende 680 Gramm. Das Gerät verfügt über eine 1,2 Megapixel Kamera an der Vorderseite zur Videotelefonie und über eine 5,0 Megapixel Kamera für Schnappschüsse auf der Rückseite.

Das Tablet ist eines der Ersten, welches durch ein optional erhältliches Keydock zu einem Android-Laptop transformierbar ist. Das Keydoch steigert außerdem die Akkulaufleistung und bietet zusätzliche Anschlüsse.

HTC Flyer

[singlepic id=764 w=618 float=center]

Das Flyer von HTC ist ein 7 Zoll großes Tablet, das durch die geringe Displaydiagonale hohe Mobilität verspricht. Entgegen der aufstrebenden Multitouch-Kultur ist das Tablet mit einem zusätzlichem Stylus ausgestattet, der schwierige Eingaben auf dem kleinen Displays vereinfacht.

Im Gegensatz zum Sony Tablet S wirk die Verarbeitung des HTC Flyer auf Grund des Metallgehäuses qualitativ hochwertig. Trotz der edleren Verarbeitung liegt das Gerät mit 420 Gramm bzgl. des Gewichts im Durchschnitt.

Amazon Kindle Fire

[singlepic id=623 w=618 float=center]

Das Kindle Fire ist der günstigste Kandidat im Vergleich und ist primär als eBook-Reader konzipiert. Daher hat es keine Kamera und der nicht vorhandene Speicherkartenslot ist von Amazon so beabsichtigt, da Inhalte ausschließlich über die eigenen Dienste bezogen werden sollen.

Das Tablet hat kein 3G-Modul und ist somit auf WLAN für den Internetzugang angewiesen. Das geringe Gewicht von 413 Gramm ordnet sich hervorragend in den 7 Zoll Tablet-Markt ein.

Samsung Galaxy Tab 8.9

[singlepic id=767 w=618 float=center]

Das Samsung Galaxy Tab 8.9 hat für seine Bildschirmdiagonale von 8,9 Zoll mit 470 Gramm ein relativ geringes Gewicht. Es bietet eine 2,0 Megapixel Kamera an der Front für gute Qualität bei Videotelefonie und eine 3,0 Megapixel Kamera auf der Rückseite für Schnappschüsse.

Das Tablet wird mit Android 3.1 ausgeliefert und hat ein 3G-Modul. Bemerkenswert ist die geringe Dicke des Gerätes von nur 8,6 Millimetern. Unglücklicherweise bietet es keinen Kartenslot zur Erweiterung des internen 16 GB Massenspeichers.

Samsung Series 7 Slate

[singlepic id=625 w=618 float=center]

Das Samsung Series 7 Slate ist neben dem als nächstes vorgestellten Apple iPad2 das einzige nicht auf Android basierende Tablet in diesem Vergleich. Es wird mit Windows 7 ausgeliefert und hat einen Intel Core i5 Prozessor mit zwei Kernen bei einer Geschwindigkeit von 1,6GHz.

Das Gerät verfügt über 128 GB interne Speicherkapazität und einen microSD-Kartenslot. Es fehlt jedoch ein 3G-Modul. Außerdem weist das Tablet weist mit 890 Gramm bei 11,6 Zoll Bildschirmdiagonale ein sehr hohes Gewicht auf. Bemerkenswert ist der hohe Preis von über 1300 Euro, was eher an Preise für vollwertige Desktop-PCs erinnert. Als kleiner Pluspunkt ist eine Tastatur optional erhältlich.

Apple iPad2

[singlepic id=747 w=618 float=center]

Das Apple iPad2 ist auf dem Tablet-Markt heute quasi das Maß der Dinge und legt somit auch die Messlatte dieses Vergleichs vor. Der interne Flashspeicher des mit iOS5 ausgelieferten Geräts ist bis zu 64 GB groß. Darüber hinaus ist die teuerste Variante auch mit 3G-Modul erhältlich und wiegt 613 Gramm.

Beim iPad(2) muss erwähnt werden, dass es schon vergleichsweise lange auf dem Markt erhältlich ist, dabei aber wie viele Apple-Produkte immer noch einen sehr hohen Preis hat. Es verfügt zwar über eine Kamera in der Front und eine auf der Rückseite, beide besitzen allerdings nur geringe Auflösungen, die z.T. noch nicht einmal die vom iPhone 3S bekannte Fotoqualität erreicht. Weiterhin sucht man vergeblich nach einem Slot für eine Speicherkarte.

Zusammenfassung

Abschließend lässt sich sagen, dass auch heute noch kein Allround-Tablet existiert, welches perfekt für jedes Einsatzszenario zugeschnitten ist. Benötigt man viel Arbeitsspeicher und eine hohe Festplattenkapazität, ist das Samsung Series 7 Slate den anderen Tablets vorzuziehen, wobei hier natürlich der weit höhere Preis und das nicht nativ für Tablets ausgelegte Betriebssystem Windows zu beachten ist.

Falls die Mobilität im Vordergrund steht, darf man das Sony Tablet P nicht außer Acht lassen. Es zeichnet sich durch das beste Gewicht-Größe-Verhältnis im Vergleich aus und ist durch seine kompakte Bauweise leicht in der Hosentasche zu verstauen.

Um eine einfachere, dem individuellen Einsatzkontext entsprechende Auswahl zu erleichtern fasst der nachfolgende Überblick die wichtigsten oben bereits kurz vorgestellten Bewertungskriterien der Devices in einem abschließenden tabellarischen Überblick zusammen:

[singlepic id=792 w=618 float=center]

Danksagung

Dieser Beitrag steht im Zusammenhang mit dem Forschungsprojekt SI-Screen, das mit Mitteln des Bundesministeriums für Bildung, und Forschung (Förderkennzeichen 16SV3982), sowie durch das Europäische AAL Joint Programm (AAL-2009-2-088) gefördert wird. Das Vorhaben wird von der innovationsmanufaktur GmbH (ehemals SportKreativWerkstatt GmbH) koordiniert und gemeinsam mit der Universität der Bundeswehr München realisiert. Weiterführende Informationen sind verfügbar unter http://www.si-screen.eu.

Alternative Möglichkeiten zur Interaktion mit großen vertikalen Displays

[toc] Ein Großteil der Entwicklungen im Bereich der Natural User Interfaces basiert auf (Multi-)Touch Interfaces und der Steuerung durch Touchgesten. Da diese Form der natürlichen Benutzerschnittstellen beispielsweise bei sehr großen vertikalen Displays oder an für den Benuter nicht erreichbaren Displays nicht verwendet werden kann, besteht die Notwendigkeit, alternative natürliche Interaktionsmechanismen einzusetzen, die eine berührungslose Interaktion mit vertikalen Displays aus einer gewissen Entfernung ermöglichen. Um einen Überblick über bereits existierende Prototypen solcher über die Touchinteraktion hinausgehenden (Beyond Touch) Interaktionsmechnismen zu geben, werden nun einige dieser Prototypen vorgestellt.

Aus der Vielzahl der Prototypen von natürlichen Interaktionsmechanismen lassen sich einige gehäuft auftretende, grundlegende Bedienkonzepte identifizieren. So werden vermehrt Ansätze gewählt, bei denen es beispielsweise möglich ist auch aus einiger Entfernung durch Touchgesten in unteschiedlichen Ausprägungen zu interagieren. Andere Prototypen basieren auf mouseähnlichen tragbaren Eingabegeräten, die eine Bedienung auf intuitive und natürliche Weise anstreben. Andere Interaktionsmechanismen beruhen auf der Gestensteuerung und verzichten auf zusätzliche Eingabegeräte auf Nutzerseite. Des Weiteren wird hier auch ein sogenanntes Brain-Computer Interface vorgestellt, das eine Anwendungsnutzung allein durch Gehirnstrommessung ermöglicht. Zunächst werden nun einige Mechanismen beschrieben, die durch die Körperbewegungen des Nutzers gesteuert werden. Nach diesen gestenbasierten Interaktionsmechanismen werden die Remote-Touch Interaktionsmechanismen, die gerätevermittelten Interaktionsmechanismen und das Brain-Computer Interface vorgestellt.

Gestenbasierte Interaktionsmechanismen

Die natürlichste Form der HCI ist die Bedienung einer Nutzerschnittstelle ohne die bewusste Nutzung eines Interaktionsmechanismus zur Erreichung der Zielsetzung. Dies bedingt einen vollständigen Verzicht auf Eingabegeräte auf Nutzerseite und die Interaktion zwischen System und Nutzer auf Basis der dem Nutzer zur Verfügung stehenden Kommunikationsmittel. Ebenso wie die Interaktion zwischen Menschen kann der Nutzer dem System seine Absichten über die Bemühung von Mimik, Gestik und Sprache mitteilen. [ref]Dahm, Markus (2006): Grundlagen der Mensch-Computer-Interaktion. 1. Aufl., . München: Pearson Studium, S. 112.[/ref] Die Gesture Based Interfaces nutzen zur Interaktion zwischen Mensch und Computer nur die Gestik zur Eingabe auf Nutzerseite und visuelles oder akustisches Feedback durch den Computer.

Magic Window

Magic Window[ref]Lee, Johnny C. (2008a): Hacking the Nintendo Wii Remote. IEEE Pervasive Computing, 3/2008 (7). IEEE Computer Society, S. 39–45.[/ref] ist ein Interaktionsmechanismus, der es dem Nutzer erlaubt ohne die Zuhilfenahme von Eingabegeräten mit Bildmaterial zu interagieren. Dazu wird die Position des Kopfes des Nutzers verfolgt (Headtracking) indem die Position der an der Brille des Nutzers befestigten Infrarot-LED von der Infrarotkamera einer Wii-Remote erfasst wird. Da die Darstellung auf dem Display stets zum Nutzer ausgerichtet wird, entsteht für diesen ein der Effekt, dass er den dargestellten Inhalt wie durch ein Fenster betrachtet. Bewegt sich der Nutzer also nach links, kann er mehr von der rechten Seite des Bildes sehen. Bewegt er seinen Kopf nach unten, kann er mehr von der oberen Seite des Bildes sehen. Nähert er sich dem Display, kann er mehr vom gesamten Bild sehen usw. Diese Form der Interaktion ist sehr natürlich, da der Nutzer das Prinzip der Paralaxe, also der scheinbaren Änderung der Position eines Objektes, wenn der Beobachter seine eigene Position verschiebt, bereits aus der im Alltag gesammelten Erfahrung kennt. Um der Interaktion weitere Freiheitsgrade hinzuzufügen kann z.B. ein weiterer Wii-Remote Controller in die Interaktion eingebunden werden.

[nggtags gallery=MagicWindow]

SixthSense

SixthSense[ref]Mistry, Pranav & Maes, Pattie (2009): SixthSense: A Wearable Gestural Interface. In: Anjyo, Ken (Hrsg.): ACM SIGGRAPH ASIA 2009 Sketches. New York, USA: ACM Press, S. 11:1[/ref] ist ein Interaktionsmechanismus der in die Rubrik des Wearable Computing eingeordnet werden kann, da die Hardware wie Kleidung am Körper getragen wird. Diese Hardware besteht aus einem Projektor und einer Kamera, die vor der Brust getragen werden sowie farbigen Markern an Daumen und Zeigefinger beider Hände. Somit können Inhalte durch den Projektor auf jeder beliebigen Fläche dargestellt werden und durch Handgesten manipuliert werden, die von der Kamera aufgenommen werden. So kann der Nutzer beispielsweise jederzeit und nahezu überall seinen Kalender anzeigen lassen, um seine Termine zu verwalten, Skizzen oder Notizen machen, Kartenmaterial der Umgebung betrachten oder gestengesteuert Fotos machen.

[nggtags gallery=SixthSense]

Imaginary Interface

Imaginary Interface[ref]Gustafson, Sean; Bierwirth, Daniel & Baudisch, Patrick (2010): Imaginary Interfaces: Spatial Interaction with Empty Hands and without Visual Feedback. In: Perlin, Ken; Czerwinski, Mary & Miller, Rob (Hrsg.): Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology. New York, USA: ACM Press, S. 3–12.[/ref] ist ebenfalls eine Wearable Computing Benutzerschnittstelle und nutzt eine Kamera zur Erfassung von Handgesten, verzichtete aber anders als SixthSense vollständig auf eine Darstellung von Inhalten und erlaubt daher eine sehr kompakte Bauweise, da kein Anzeigegerät erforderlich ist. Durch eine L-Geste mit der nichtdominanten Hand wird eine imaginäre Eingabefläche aufgespannt, auf der dann durch das Zusammenführen von Daumen und Zeigefinger gezeichnet oder geschrieben werden kann. So kann der Nutzer jederzeit  Dokumente zu in seinem aktuellen Umfeld relevanten Themen erstellen. Diese auf einfachen Gesten basierende Form der Interaktion ist leicht erlernbar, jedoch sind komplexe Zeichnungen wegen des fehlenden visuellen Feedbacks schwierig zu realisieren.

[nggtags gallery=ImaginaryInterface]

Multitoe

Mit Multi Toe[ref]Kaefer, Konstantin; Kanitz, Dorian; Meusel, René; Fetzer, Caroline; Augsten, Thomas; Stoff, Thomas; Holz, Christian & Baudisch, Patrick (2010): “Multi-Toe” Interaction with a High-Resolution Multi-Touch Floor. Potsdam, Germany, S. 1-6.[/ref] kann der Benutzer eine Anwendung mit den Füßen steuern. Dazu erfolgt die Interaktion auf einem touchsensitiven Untergrund, der sich wiederum über einem Display befindet. Bei dieser Form der Touchinteraktion treten einige Besonderheiten auf. So hat der Nutzer nahezu dauerhaften Kontakt zur Interaktionsoberfläche. Außerdem ist die Kontakfläche um einiges größer als bei der Touchinteraktion mit Fingern, sodass ein Interaktionspunkt an der Sohle des Benutzers identifiziert werden muss, um eine präzise Bedienung zu gewährleisten. Allerdings bietet Multi Toe auch einige Vorteile gegenüber einer herkömlichen Touchinteraktion mit Fingern. So kann der Nutzer anhand des individuellen Profils seiner Schuhsohle identifiziert werden. Außerdem kann eine Gewichtsverlagerung des Nutzers erkannt werden, wodurch eine differenzierte Touchinterakion mit zusätzlichen Freiheitsgraden erfolgen kann.

[nggtags gallery=MultiToe]

Wii Gesture Interface

Wii Gesture Interface[ref]Lin, Jiaqing; Nishino, Hiroaki; Kagawa, Tsuneo & Utsumiya, Kouichi (2010): Free Hand Interface for Controlling Applications Based on Wii Remote IR Sensor. In: Spencer, Stephen N. (Hrsg.): Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality Continuum and its Applications in Industry VRCAI 2010. New York, USA: ACM Press, S. 139–142.[/ref] ist ein Interaktionsmechanismus zur Steuerung vertikaler Displays durch natürliche Handgesten. Eine Platine mit einer Vielzahl von Infrarot-LED leuchtet dazu den Raum vor dem Display aus. Die reflektierte Infrarotstrahlung wird dann von der Infrarotkamera eines Wii-Remote Controllers  in ein Bild umgewandelt, dass es ermöglicht die Hand des Benutzers und ihre Bewegungen zu identifizieren. Somit können einfache Gesten, wie eine Bewegung der Hand von links nach rechts genutzt werden, um beispielsweise den nächsten Inhalt auszuwählen oder eine Berührungsgeste, um einen Inhalt auszuwählen. Um dann weitere Interaktionsmöglichkeiten zu schaffen und die Präzision der Interaktion zu steigern, kann zusätzlich noch ein weiterer Wii-Remote Controller eingebunden werden, dessen Tasten z.B. mit schwer durch Gesten darstellbaren Aktionen belegt werden können.

[nggtags gallery=Wii Gesture Interface]

Remote-Touch Interaktionsmechanismen

Diese Form der alternativen natürlichen Interaktionsmechanismen erfordert keine Präsenz des Nutzers an einem vertikalen oder horizontalen Touchscreen sondern verlagert die direkte Interaktion mit dem System auf das vom Benutzer verwendete Gerät. Zwar erfolgt die Interaktion mit dem verwendeten Interaktionsmechanismus wiederum durch intuitive Touchgesten, jedoch ist der Nutzer nun nicht mehr dazu gezwungen sich zur Interaktion in unmittelbarer Nähe des großen vertikalen Displays aufzuhalten. Auf diese Weise können mehr Nutzer und auch entfernt stehende Nutzer in die Interaktion einbezogen werden. Je nach visuellem Feedback des genutzten Interaktionsmechanismus kann auch eine uneingeschränkte Interaktion wie am großen vertikalen Touchscreen selbst erfolgen. Außerdem ist es mit Remote Touch Interfaces möglich auch Displays, die keine Touchscreen sind mittel touchbasierter Nutzerinteraktion zu steuern.

SecondLight

SecondLight[ref]Izadi, Shahram; Hodges, Steve; Taylor, Stuart; Rosenfeld, Dan; Villar, Nicolas; Butler, Alex & Westhues, Jonathan (2008): Going Beyond the Display: A Surface Technology with an Electronically Switchable Diffuser. In: Cousins, Steve & Beaudouin-Lafon, Michel (Hrsg.): Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology. New York, USA: ACM Press, S. 269–278.[/ref] ist ein von Microsoft auf Basis der Technologie des MS Surface entwickelter Ansatz, der die gleichzeitige Projektion zweier unterschiedlicher Bilder auf die Oberfläche eines horizontalen Displays ermöglicht. Während das eine Bild wie gewohnt auf der Darstellungsfläche des Gerätes angezeigt wird, wird das zweite Bild durch diese Darstellungsfläche hindurch projiziert und kann durch weniger lichtdurchlässige Materialien sichtbar gemacht werden. Dies ermöglicht auch eine Projektion auf in einer geringen Entfernung über dem Gerät befindliche Oberflächen. Zusätzlich können auf diesen entfernten Oberflächen auch Touchinteraktion erfolgen.

[nggtags gallery=SecondLight]

Touch Projector

Touch Projector[ref]Boring, Sebastian; Baur, Dominikus; Butz, Andreas; Gustafson, Sean & Baudisch, Patrick (2010): Touch Projector: Mobile Interaction Through Video. In: Henry, Nathalie & Tabard, Aurélien (Hrsg.): Proceedings of the 28th International Conference on Human Factors in Computing Systems. Atlanta, GA, USA: ACM Press, S. 2287–2296.[/ref] ist ein Interaktionsmechanismus, der es erlaubt Inhalte auf gewöhnlichen Displays mittels Touchgesten zu manipulieren. Zu diesem Zweck wird das Echtzeitbild der Kamera eines Smartphones genutzt. Die darauf sichtbaren Inhalte, die auf dem herkömmlichen Display dargestellt werden, können nun durch Touchgesten auf dem Display des Smartphones manipuliert werden. Anschließend wird die Veränderung auch auf die Darstellung auf dem herkömmlichen Display übertragen. Dabei werden alle Displays in der Umgebung und das Smartphone über eine Server synchronisiert, was auch das verschieben eines Inhalts von einem Display auf ein anderes ermöglicht. Durch diesen Mechanismus können auch für den Benutzer unzugängliche nicht touchfähige Displays via Touchgesten genutzt werden.

[nggtags gallery=TouchProjector]

Light Space

Auf den ertsen Blick unterscheidet sich Light Space[ref]Wilson, Andrew D. & Benko, Hrvoje (2010): Combining Multiple Depth Cameras and Projectors for Interactions On , Above , and Between Surfaces. In: Perlin, Ken; Czerwinski, Mary & Miller, Rob (Hrsg.): Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology. New York, USA: ACM Press, S. 273–282.[/ref] nicht wesentlich von andern natürlichen Benutzerschnittstellen. Es bietet sowohl eine horizontale als auch eine vertikale projizierte Darstellungsfläche, auf denen die gewohnten Touchgesten zur Manipulation von Bildinhalten ausgeführt werden können. Die Innovation liegt bei Light Space zwischen den Darstellungsflächen, denn ein dritter Projektor sowie drei  Kameras zur Entfernungsmessung erlauben eine Touchinteraktion auf gewöhnlichen Gegenständen aber auch eine Darstellungsübergreifende Interaktion mit den Inhalten. So kann ein Nutzer einen Inhalt auf der einen Darstelungsfläche berühren, danach die andere Darstellungsfläche berühren und so den Inhalt dorthin zu verschieben. Außerdem kann er einen Inhalt vom Rand der Darstellungsfläche auf seine Hand verschieben, wodurch der Inhalt im Sinne der Augmented Reality zu einem projizierten Ball wird, den der Nutzer auf seinem Arm umherrollen kann oder in die andere Hand bzw. auf einen Gegenstand legen kann. Berührt der Nutzer wiederum mit der Hand ohne Ball eine Darstellungsfläche, wird der durch den Ball repräsentierte Inhalt dorthin verschoben. Des Weiteren können durch die präzise Tiefenwahrnehmung der Anwendung Menüs im Raum platziert werden. Hält der Benutzer seine Hand über einen auf den Boden projizierten Menü Schriftzug, ändert sich die nun auf der Hand befindliche Darstellung je nach Höhe über dem Boden zu einem Menüpunkt, der dann durch das Entfernen der Hand ausgewählt werden kann.

[nggtags gallery=LightSpace]

Gerätevermittelte Interaktionsmechanismen

Zur Interaktion mit den Device Mediated Interfaces benötigt der Nutzer ein zusätzliches Eingabegerät, das er bei der Interaktion bei sich trägt oder in der Hand hält. Entgegen der indirekten Manipulation mit einer gewöhnlichen Maus, die nur über Sensoren zur Erfassung einer Positionsveränderung in einer zweidimensionalen Ebene verfügt und diese auf den Zeiger überträgt, können die für Device Mediated Interfaces genutzten Interaktionsmechanismen ihre Position im Raum oder relative Lageveränderungen durch zusätzliche optische, gyroskopische oder Beschleunigungssensoren ermitteln. So kann der Nutzer direkt mit Inhalten interagieren, denn wenn er mit dem Gerät auf einen Inhalt zeigt, zeigt auch der Cursor auf dieses Ziel. So wird die natürliche Interaktion des Nutzers über die Sensorik der genutzten Interaktionsmechanismen an den Computer übertragen und dort in entsprechende Manipulationen umgesetzt. Der Interaktionsmechanismus übernimmt sozusagen eine Mediatorrolle zwischen dem Nutzer und dem genutzten System, da er die natürlichen Interaktionen des Nutzers in vom System interpretierbare Manipulationen umwandelt. Außerdem bieten die Zusatztasten des jeweiligen Interaktionsmechanismus die Option Shortcuts für bestimmte Funktionen zu nutzen. Auf diese Weise muss der Nutzer keine komplexen Muster von Manipulationen nachbilden, um das System zu Steuern. Zur weiteren Steigerung der Effizienz der Interaktion sind Device Mediated Interfaces ergonomisch gestaltet, sodass der Nutzer gewissermaßen mit dem Gerät verschmilzt und das Gerät die natürliche Interaktion des Nutzers nicht beeinträchtigt.

Soap

Soap[ref]Baudisch, Patrick; Sinclair, Mike & Wilson, Andrew (2007): Soap: A Pointing and Gaming Device for the Living Room and Anywhere else. In: Heart, John C. (Hrsg.): ACM SIGGRAPH 2007 Emerging Technologies. New York, USA: ACM Press, S. 17–20.[/ref] ist ein Interaktionsmechanismus, der die Steuerung eines Zeigers zur Nutzung einer Anwendung auf großen vertikalen Wanddisplays ermöglicht. In einer flexiblen Kunststoffhülle befindet sich der optische Sensor einer Mouse sowie eine Taste auf der Rückseite der Platine, die durch die Kunsstoffhülle hindurch betätigt werden kann. Die Kunststoffhülle ist wiederum mit einem dehnbaren Stoffüberzug bespannt. Auf diese Weise kann eine Verschiebung der Stoffhülle durch den optischen Sensor registriert werden und so die Bewegung des Cursors gesteuert werden. Eine schnelle Verschiebung des Cursors hingegen ist in vertikale Richtung durch dauerhaftes fixieren des Gerätes durch Zusammendrücken von Daumen und Zeigefinger oder in horizontale Richtung durch Drehen des Gerätes um die Längsachse ähnlich einem nassen Stück Seife in der Handfläche möglich. Aufgrund dieser Seifenmetapher trägt der Mechanismus auch seinen Namen.

[nggtags gallery=Soap]

Brain-Computer Interface

Das Brain-Computer Interface[ref]McFarland, Dennis J. & Wolpaw, Jonathan R. (2011): Brain-Computer Interfaces for Communication and Control. Communications of the ACM, 5/2011 (54), S. 60-66.[/ref] ist eine Form der Mensch-Computer Interaktion, die auf der Messung von Gehirnströmen basiert. Da dies über an der Kopfhaut platzierte Elektroden geschieht, ist dieser Interaktionsmechanismus im Gegensatz zu den bisher vorgestellten Mechanismen auch für Menschen mit eingeschränkter Bewegungsfähigkeit geeignet. Die Anwendung von McFarland und Wolpaw erlaubt z.B. eine Texteingabe ohne die Nutzung zusätzlicher Eingabegeräte. Auf einem Display wird dazu eine Matrix von Buchstaben angezeigt, von denen jeweils abwechselnde Gruppen aufleuchten. Der Nutzer muss während der Blinksequenz eine Buchstaben mit den Augen fixieren. Da jeder Buchstabe eine individuelle Blinksequenz hat und das Aufleuchten des fixierten Buchstaben mittels EEG gemessen werden kann, ist der vom Nutzer ausgewählte Buchstabe eindeutig bestimmbar. So wird eine Texteingabe allein durch das Anschauen der Buchstabenmatrix möglich. Allerdings ist durch die Dauer der Blinksequenz keine schnelle Eingabe möglich und die für diesen Interaktionsmechanismus benötigte Hardware ist im Vergleich zu den meisten zuvor beschriebenen Prototypen sehr teuer.

[nggtags gallery=BCI]

Fazit

Fallende Preise durch die kommerzielle Massenfertigung von Sensortechnik wie der Wii-Remote oder der Microsoft Kinect aber auch sinkende Preise bei großen vertikalen Displays oder Projektoren haben dazu beigetragen, dass die Zahl neu entwickelter Interaktionsmechanismen zur Gestaltung der Schnittstelle zwischen Mensch und Computer zunimmt. Da gerade im Bereich der NUI bisher nur wenig Forschungsarbeit im Bezug auf die Standardisierung solcher Nutzerschnittstellen und die Eignung eines Interaktionsmechanismus für die Nutzung in einem bestimmten Anwendungsumfeld oder für eine bestimmt Aufgabe erfolgt ist, müssen zukünftige Arbeiten weitere Erkenntnisse über die Leistungsfähigkeit und Nutzerakzeptanz natürlicher Interaktionsmechnismen liefern. Außerdem haben alle der in diesem Artikel vorgeschlagenen Kategorien von natürlichen Interaktionsmechnismen ihre Vor- und Nachteile, sodass eventuell eine Kombination der Merkmale existierender natürlicher Benutzerschnittstellen oder die Entwicklung neuer Ansätze zur Gestaltung dieser Schnittstellen einen Interaktionsmechnismus hervorbringen, der das Potential hat, eine ähnlich hohe Verbreitung und Nutzerakzeptanz zu erreichen, wie es heute bei Maus und Tastatur für die GUI der Fall ist.

Militärische Lagekarte auf dem Microsoft Surface

[toc]

Die „Militärische Lagekarte“ ist eine Anwendung für das Microsoft Surface, die im Sommer 2010 an der Universität der Bundeswehr München in einem Programmierprojekt der Professur für Programmierung kooperativer Systeme an der Fakultät für Informatik entstand. Sie dient in erster Linie dazu, die herkömmlich genutzten Lagekarten in Papierform zu ersetzen und die Vorteile einer mehrbenutzerfähigen digitalen Karte, wie das schnelle Wechseln des dargestellten Kartenausschnitts oder das Zoomen, zu nutzen und gleichzeitig zu einer besseren soziotechnischen Integration beizutragen.

httpvh://www.youtube.com/watch?v=mqG3wuJLyXo

Ein wesentlicher Vorteil liegt in der digitalen Unterstützung der Auswahl zu setzender taktischer Zeichen.

Flexibel nutzbares Kartenmaterial

Im Gegensatz zu papiergebundenen Karten bietet das Surface die Möglichkeit, verschiedene Kartendienste und Detaillierungsgrade je nach angestrebem Einsatzszweck zu nutzen und ggf. zu kombinieren. Auf der Karte eingetragene Zusatzinformationen bleiben beim Wechseln der Karte entsprechend erhalten.

[singlepic id=187 w=618]

Die Interaktionsmöglichkeiten reichen dabei von einfachen Zoom- und Drehaktionen bis hin zum Setzen und Verschieben komplexer taktischer Zeichen.

[nggtags gallery=Militärische_Lagekarte+Karte]

Taktische Zeichen zur Darstellung der Lage

Das Surface ermöglicht durch die große Zahl an zur Verfügung stehenden, intuitiven Touchgesten eine natürliche, leicht zu erlernende und freudvolle Art der Bedienung der digitalen Karte sowie der darauf platzierten taktischen Zeichen. Die taktischen Zeichen repräsentieren jeweils einen Truppenverband, einzelne Fahrzeuge oder Soldaten.

Einen Eindruck davon, wie taktische Zeichen aufgebaut sind und v.a. wie sie zu konkreten Zeicheninstanzen kombiniert werden können, vermittelt nachfolgende Darstellung:

Bezeichnung Taktisches Zeichen
Grundzeichen Beispiel für taktische Zeichen, Grundzeichen
Panzer Beispiel für taktische Zeichen, Modul Panzer
Grenadier Beispiel für taktische Zeichen, Modul Grenadier
Aufklärer Beispiel für taktische Zeichen, Modul Aufklärer
Panzeraufklärer Beispiel für taktische Zeichen, Zeichen für Panzeraufklärer
Panzergrenadier Beispiel für taktische Zeichen, Zeichen für Panzergrenadier

Eine mit taktischen Zeichen versehene Lagekarte könnte beispielsweise folgendermaßen aussehen. Dabei steht die Färbung des Zeichens für den Status des repräsentierten Truppenteils mit den Unterscheidungen, freundlich (blau), feindlich (rot), neutral (gelb) und unbekannt (grau).

[singlepic id=183 w=618]

Setzen taktischer Zeichen

Um schnell durch die Vielzahl von verschiedenen, nach dem oben dargestellten Kombinationsschema modular aufgebauten taktischen Zeichen navigieren zu können, wurde ein kaskadierendes Menü entwickelt. Da es weit über 1.000 verschiedene konkrete taktische Zeichen gibt, zeigt die erste Menüebene jeweils nur die grundlegenden Gattungen an und kaskadiert dann in den folgenden sich automatisch öffnenden Ebenen immer wieder zu konkreteren Instanzen. Hierdurch wird es mit intuitiv verständlichen Mitteln möglich, die ohne ausreichende Übung unüberschaubar große Zahl verfügbarer taktischer Zeichen auf eine kognitiv leicht erfassbare Größenordnung herunterzubrechen.

[singlepic id=180 w=618]

Nichts ist so beständig, wie die Lageänderung – Modifikation von taktischen Zeichen

Durch die Interaktivität des Surface können externe Lageinformationen schnell in die Darstellung auf dem Surface eingebunden werden und von den Nutzern, z.B. den Soldaten in den Führungsstäben der Bundeswehr, zur weiteren Einsatzplanung herangezogen oder zur Planung verschiedener Szenarien modifiziert werden. Auch das Verschieben eines Zeichens auf der Karte kann mit der militärischen Lagekarte auf dem Surface leicht durchgeführt werden, wohingegen ein einmal auf einer Papierkarte eingezeichnetes Zeichen statisch ist und entsprechend nicht mehr modifiziert werden kann.

[singlepic id=185 w=618]

Weitere Interaktionsmöglichkeiten zu taktischen Zeichen

Die folgende Galerie zeigt noch einige weitere Interaktionsmöglichkeiten rund um die Einbindung taktischer Zeichen in die militärische Lagekarte:

[nggtags gallery=Militärische_Lagekarte+taktische_Zeichen]

Hintergrundinformationen zum Projektsetting

Der Prototyp der militärischen Lagekarte auf dem Surface ist das Ergebnis eines Master-Projektes der beiden Wirtschaftsinformatiker Tim Saldik und David Weidt in Kombination mit einem Praktikum der Informatik-Studenten Ronny Vogel, Steffen Schurig und Richard Krug. Im Rahmen des Masterprojekts wurde die Anwendung zunächst konzipiert und anschließend während des Praktikums auf der Basis InfoStrat.VE[ref]Weitere Informationen zur Entwicklung mit InfoStrat.VE sowie der Download des Projekts sind verfügbar unter http://bingmapswpf.codeplex.com/. Andere zum Teil auf Virtual Earth basierende Projekte von InfoStrat für das Microsoft Surface befinden sich unter http://www.infostrat.com/home/solutions/Surface/.[/ref] umgesetzt, das das Kartenmaterial bereitstellte und die Nutzung des Materials auf dem multitouchfähigen Microsoft Surface durch Gestensteuerung ermöglichte. Die Anwendung wurde mittels der agilen Scrum Methode entwickelt, wobei ein Sprint eine Dauer von dreieinhalb Tagen hatte und insgesamt sieben Sprints vorgesehen waren. Den Wirtschaftsinformatikern kam dabei die Rolle der „Product Owner“ zu, während die Informatiker das Scrum-Team bildeten. Als Scrum Master fungierte zusätzlich der Projektbetreuer Florian Ott.